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Abstract: - As it is known, groups of correlated 2D images of various kind could be represented as 3D images, which are 

mathematically described as 3
rd

 order tensors. Various generalizations of the Singular Value Decomposition (SVD) exist, 

aimed at the tensor description reduction. In this work, new approach is presented for 3
rd

 order tensor decomposition, 

where unlike the famous methods for decomposition components definition, iterative calculations are not used. The basic 

structure unit of the new decomposition is an elementary tensor (ET) of size 222, which builds the 3D tensors of size 

N×N×N, where N=2
n
. The decomposition of the single ЕТ is executed by using Hierarchical 2-level SVD, where (in each 

level) the SVD of size 2×2 (SVD2×2) is applied on all sub-matrices obtained after the elementary tensor unfolding. The so 

calculated new sub-matrices of the SVD2×2 in each hierarchical level, are rearranged in accordance with the lessening of 

their corresponding singular values. The computational complexity of the new tensor decomposition is lower than that of 

the decompositions, based on iterative  methods, and permits parallel calculations for all SVD2×2 for the sub-matrices in a 

given hierarchical level. 
 

Key-Words: - 3D images, tensor decomposition, Hierarchical SVD (HSVD), elementary tensor of size 222. 

 

 

1 Introduction 

In the last years, the scientific interest aimed at the 

processing, analysis and recognition of 3D images, 

represented through tensor decomposition, was 

significantly increased. The basic methods for 

tensor decomposition [1,2,3,4] are different 

multilinear extensions of the matrix SVD, called 

Multilinear SVD (MSVD), or generalizations of the 

SVD matrix for higher-order tensors, called Higher-

Order SVD (HOSVD). Such are the famous 

methods: CANDECOMP/PARAFAC (CP) or 

Canonical Polyadic Decomposition, where the 

tensor is represented as a sum of rank-one tensors; 

the Tucker decomposition, which is a higher-order 

form of the Principal Component Analysis (PCA); 

the Kruskal decomposition, etc. The components of 

the tensor decomposition are calculated by using 

various methods, such as, for example: the tensor 

power iteration; the QR-factorization, the Higher-

Order Eigenvalue Decomposition (HOEVD); the 

Jacobi algorithm, etc. To enhance the decomposition 

of the 3
rd

 order tensors, which represent sequences 

of 2D correlated images, in this paper is proposed 

non-iterative method for Hierarchical SVD (HSVD), 

based on the SVD of size 2×2 (SVD2×2) [5]. The 

basic idea is to represent the tensor decomposition 

of size N×N×N (for N=2n) through a hierarchical 

tree-like structure of n levels. In the first 

hierarchical level the tensor is divided in elementary 

tensors (ЕТ) of size 222, transformed into matrix 

form, and processed with SVD2×2. The 

decomposition components of all matrices of size 

22 are rearranged in accordance with the lessening 

of their singular values and transformed back into 

corresponding ET. In each consecutive hierarchical 

level the edges of the cubes, which represent all 

ETs, are increased twice, in result of which their 

voxels are interlaced. These increased ETs are 

transformed again into matrices, their sub-matrices 

are decomposed through SVD2×2, and rearranged 

following the lessening of their singular values. 

Then, the so obtained matrices are transformed into 

tensors again, etc. The essence of the new method is 

given in the following sections of this paper. 
 

 

2 3D image representation through 

tensor decomposition formulation 
 

The tensor form is suitable for the representation of 

3D images, which correspond to sequences of 

correlated 2D images of the kind: computer 

tomography images, ultrasound images, 

multispectral and hyper spectral images of still 

objects, moving objects, etc. For illustration only, 
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on Fig. 1 is shown the 3D silhouette image 

sequence, represented by a 3-order tensor [1]. 

 

 
Fig. 1. 3D silhouette image sequence, represented 

by third-order tensor 

 

The main advantage of the tensor representation 

is, that it retains to a maximum degree the 

correlation between the 3D-image voxels in all three 

orthogonal directions. As a result of the CP 

decomposition, each 3D tensor is represented as a 

sum of 3D tensors of same size, whose variances 

(respectively, weights) decrease rapidly. Each tensor 

in this sum is an outer product of 3 mutually 

orthogonal vectors. The aim of the tensor 

decomposition is to achieve full decorrelation of the 

sum components. Each tensor is defined by a 

relatively small number of parameters, and from this 

it follows, that the general representation of the first 

several tensors in the decomposition, which have 

maximum weight, is significantly smaller than that 

of the decomposed tensor. The decomposition of the 

kind MSVD permits to reduce the tensor 

representation through cutting-off the tensors with 

smallest weights, retaining minimum mean-square 

approximation error.  

In this work, new approach is proposed for 

tensors calculation (i.e., the decomposition 

components), by using the HSVD. For this, in each 

hierarchical level, on all sub-matrices of size 22, 

which build the transformed tensor, is applied 

SVD22. The sub-matrices are rearranged in 

accordance with their singular values, and the 

matrices, weighted this way, are transformed back 

into corresponding tensors (decomposition 

components). In the next sections of the paper is 

described the НSVD for 3-order tensor, based on the 

matrix SVD22. 

 

 

3  SVD calculation for a matrix of size 

22 

Each matrix [X] of size 22 could be decomposed 

through SVD22, as follows [6]: 
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x11=a, x12=b, x21=c, x22=d - elements of matrix [X]; 
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Here 1 and 2 are the singular values of the 

matrix [X], where 1  2; 21 U,U


 and 21 V,V


 are 

its left and right eigen vectors, for which 

ss
t U]X][X[


  and ss

t V]X[]X[


  for s=1,2. Here 

2
ss   are the corresponding eigenvalues of the 

two symmetrical matrices: 
t]X][X[  and ]X[]X[ t

.  

From Eq. (1) it follows, that matrices [C1] and 

[C2] could be represented as follows: 

,
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In correspondence with Eq. (2), the elements of [C1] 

and [C2] are defined by the four parameters , , , 
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and , i.e., the decomposition, represented by Eq. 

(1), is not “overcomplete”. 

 

 

4 Calculation of the Hierarchical SVD 

for tensor of size 222 

The tensor of size 2×2×2, noted as Т2×2×2, is the 

kernel of the decomposition for the 3
rd

-order tensor 

of size N×N×N for N=2
n
. After mode-1 unfolding 

(or matricization) the elementary tensor T2×2×2, is 

obtained: 
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In the first level of the HSVD algorithm for the 

tensor Т2×2×2 (HSVD2×2×2), on each of the matrices 

[X1] and [X2] is applied SVD of size 2×2 (SVD2×2), 

and in result is got: 
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   The so obtained matrices [Ci,j] of size 2×2 for 

i,j=1,2 in Eq. (4) are rearranged in new couples in 

correspondence to their singular values. After the 

rearrangement, the first couple of matrices [C11] and 

[C21], which have high singular value, defines the 

tensor T1(2×2×2) by reverse matricization, and the 

second couple [C12] and [C22] which have lower 

singular value - the tensor T2(2×2×2).  Then: 
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    After mode-3 unfolding of both tensors, is 

obtained: 
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     In the second level of HSVD2×2×2, on each matrix 

[Xi,j] of size 2×2 is applied SVD2×2 and in result is 

got: 
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    The so calculated matrices [Ci,j,k] of size 2×2 for 

i,j,k =1,2 are rearranged into 4 new couples with 

similar singular values in order, defined by its 

decrease. Each of these 4 couples of matrices by 
reverse matricization defines a corresponding tensor 

of size 2×2×2. After their mode-1 unfolding, is 

obtained:  
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     In result of the execution of the two levels of the 

HSVD2×2×2, the tensor Т2×2×2 is represented as: 
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      On Fig. 2 is shown the decomposition algorithm 

for the elementary tensor Т2×2×2. After the 

decomposition, the tensors in the sum are arranged 

in correspondence to the lessening of the s  values 

for the sub-matrices, obtained through unfolding all 

tensors in the sum. The voxels with largest tensor 

values are coloured in red, and the smallest - in blue.  

On Fig. 3 is shown the calculation graph of the 

2-level HSVD algorithm for the elementary tensor 

T2×2×2, based on the multiple calculation of SVD2×2 

in each hierarchical level. 

After the execution of the calculations for a 

given level, the elements of the sub-matrices 

obtained for the SVD2×2 are rearranged in 

accordance with the lessening of the s  values, and 

are transformed back into new elementary tensors: 

two tensors T1(2×2×2) and T2(2×2×2) - after the end of the 

first level, and four tensors T11(2×2×2), T12(2×2×2), 

T21(2×2×2) and T22(2×2×2) - after the second level. 

 

 

5 Calculation of the HSVD for 

tensor of size 4×4×4 and 8×8×8 

In the first level of the HSVD4×4×4 algorithm the 

tensor Т4×4×4 (for N=4), shown on Fig. 4, is divided 

into eight elementary tensors T2×2×2(i) for i=1,2,..,8 

(cubes of size 2×2×2). In accordance with this 

algorithm, each elementary tensor is decomposed 

into 4 new tensors Тj(2×2×2)(i) for j=1,2,3,4 of same 

size. In the 1
st
 level of HSVD4×4×4, on each tensor 

Тj(2×2×2)(i) composed of 8 voxels of same colour 

(yellow, red, green, blue, white, purple, light blue, 

and orange), is applied HSVD2×2×2. After the 

rearrangement of the elementary tensors, and their 

integration, are obtained four new 4 tensors 

Тj(4×4×4)(i). 
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Fig. 2. Two-level HSVD2×2×2 algorithm for elementary tensor of size 2×2×2 based on the SVD2×2 
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Fig. 3. The flow graph of the 2-level HSVD for the elementary tensor T2×2×2, based on the SVD2×2 
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Fig. 4. The tensor Т4×4×4 is divided into eight elementary 

tensors T2×2×2(i) for i=1,2,..,8 in the first HSVD4×4×4 level, 

where the HSVD2×2×2 is applied on each group of voxels 

of same color (8 in total) 

In the second level of the HSVD4×4×4 algorithm each 

of the four tensors Тj(4×4×4)(i) is divided into eight 

sub-tensors Ti,k(2×2×2)(j) for i=1,2, j=1,2 and k=1,2 in 

the way, defined by the spatial net for voxel 

interlacing as shown on Fig. 5. The colour of the 

voxels in each cube corresponds to that from the 

first level of the HSVD4×4×4 algorithm. On each 

expanded elementary tensor (double size tensor), 

shown on Fig. 5, is applied once again the 

НSVD2×2×2 algorithm. 
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Fig. 5. Division of tensors Тi(4×4×4)(j) into the elementary tensors Tj(2×2×2)(i) in the second HSVD4×4×4 level,  

where the HSVD2×2×2 is applied on each group of voxels of same color (32 in total)   

 

After the execution of the 1
st
 decomposition 

level, the tensor Т4×4×4 is represented as a sum of 4 

components: 


 

 
2

1i

2

1j
)444(j444 )i(TT               (10) 

The so calculated 4 tensors Тi(4×4×4)(j) are 

arranged in correspondence with the lessening of the 

mean singular values (the energy) of the elementary 

tensors Ti,k(2×2×2)(j), for i=1,2, j=1,2, k=1,2. The 

tensors Тi(4×4×4)(j) are rearranged in accordance with 

the energy decrease of the ЕТs Ti,k(2×2×2)(j), which 

build them. In accordance with Fig. 2, on each ЕТ is 

applied the two-level НSVD2×2×2 again. After the 

execution of the second decomposition level, the 

tensor Т444 is represented as a sum of 16 

components: 

     
 

 
4

1i

4

1j
)444(j444 )i(TT               (11) 

The computational graph of the 2-level HSVD4×4×4  

decomposition is shown on Fig. 6.  

Elementary 
Tensor
2×2×2

Tensor
4×4×4
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  Fig.6.Structure of the computational graphs of the full and truncated 4-level binary tree for the execution  

of the 2-level 3D HSVD444 algorithm based on the SVD2×2 

 

Level 1

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

    
Level 2

    
Level 3

 

Fig.7. Section for tensor of size 8×8×8 in levels 1, 2, and 3 of the 3-level HSVD888 algorithm, based on the 

SVD2×2 (each tensor here is represented as a matrix of size 8×8; in each level, the SVD2×2 is executed 16 times) 

 

The so calculated 16 tensors Тj(4×4×4)(i) are 

arranged in accordance with the decreasing values 

of the singular values of kernels, Ti,k(2×2×2)(j), which 

compose them, for i=1,2, j=1,2 and k=1,2. In the 1
st
 

level of the full HSVD444, the HSVD222 is 

executed 8 times, and in the 2
nd

 level - 32 times.  

In the case, when the tensor is of size 8×8×8, the 

corresponding HSVD8×8×8 algorithm if of 3 levels: in 

the first level are obtained 4 tensors of same size; in 

the second - 16 tensors, and in the last, third level - 

64 tensors. 

On Fig. 7 are shown the corresponding sections 

of the initial tensor in the first decomposition level, 

and of one tensor in the second and third levels. In 

the second level are shown only 8 of the sub-

matrices of size 2×2, on which is applied the 

SVD2×2, and in the third level - only four of the sub-

matrices of size 2×2. The elements of each sub-

matrix are coloured in same colour: red, green, blue, 

yellow. 

 

 

Rearrangement

Rearrangement

Rearrangement

Rearrangement

Tensor 4×4×4

Rejected 

component

Truncated 3D HSVD

Retained 

component

Tensor approximation

Level 1 of 

3D HSVD

Level 2 of 3D HSVD

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
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6 General HSVD case for a tensor of 

size N×N×N 

The decomposition of tensors Т4×4×4 and Т888 could 

be generalized for the case, when the tensor TN×N×N 

is of size N×N×N for N=2
n
. As a result of the use of 

the HSVDN×N×N algorithm, the tensor nnn 222
T


 is 

represented as a sum of N
2
=2

2n
 singular tensors: 

        .)i(TT

n n

nnnnnn

2

1i

2

1j
)222(j222 

 


              (12) 

The singular tensors )i(T
)222(j nnn 

 of size 

2
n
×2

n
×2

n
 are arranged in accordance with the 

decreasing values of the energies of Ti,k(2×2×2)(j) for i, 

j, k = 1,2,..,2
n
, which build them. The number of 

hierarchical levels needed for the execution of the 

HSVDN×N×N algorithm for N=2
n
, is n. 

 

 

7 Example for tensor decomposition 

of size 2×2×2  

Let the voxels of the elementary tensor Т2×2×2, 

represented in correspondence with Eq. (3), 

have the values: a=a, b=a, c=b, e=a, f=b, j=b, 

h=a. Then Eq. (3) becomes: 

   ]X[]X[
abbb

baaa
)T(unfold 21222 










 

After applying the SVD2×2 on each of the 

matrices [X1] and [X2], is obtained:  

],C[]C[
bb

aa
]X[ 12111 








 ]C[]C[

ab

ba
]X[ 22212 








  

where: 

,
bb

aa
]C[ 11 








   ,

00

00
]C[ 12 








    ,

11

11

2

ba
]C[ 21 








  

,
11

11

2

ba
]C[ 22 












  

After the rearrangement of the voxels of the 

tensors T1(222) and T2(222) composed by the 

matrices [C11], [C12], [C21], [C22], followed by mode-

3 unfolding of both tensors, the next four matrices 

are obtained: 

    ;

2

ba
a

2

ba
a

]X[ 11





















    ;

2

ba
b

2

ba
b

]X[ 12





















  

    ;

2

ba
0

2

ba
0

]X[ 21





















 .

2

ba
0

2

ba
0

]X[ 22





















  

On each of these matrices is then applied once 

more SVD2×2, and as a result is obtained: 

],C[]C[]X[  ],C[]C[

]X[  ],C[]C[]X[  ],C[]C[]X[

22222122122121

122122112111211111





 

where 

   ,
bb

aa
]C[ 111 








 ,

11

11

2

ba
]C[ 211 








  

   ,
11

11

2

ba
]C[ 221 








    

   .
00

00
]C[]C[]C[]C[]C[ 222122212112121 








  

The values of the voxels of tensors T1(1), T1(2), 

T2(1), and T2(2) (each of size 2×2×2), composed by 

the matrices [C111], [C112], [C211], [C212], [C121], 

[C122], [C221], [C222], are given on Fig. 8. In this 

case, the voxels coloured in red only (12 in total), 

have nonzero values. The remaining 20 voxels, 

coloured in blue (half of these, corresponding to the 

second tensor, and all voxels of the third and fourth 

tensors in the decomposition) have nonzero values.  

 

 

8 Evaluation of the decomposition 

components energy, and their mutual 

correlation 
 

8.1. Tensor energy 

The energy of each tensor, represented by the 

decomposition (12), is defined by the relation: 

        ,P)k,j,i(tP

2

s

N

1s
T

N

1i

N

1j

N

1k

2
T 

  

            (13) 

where )k,j,i(t  are the voxels of the tensor Т, and 

sTP is the energy of each tensor Ts for s=1,2,., N
2
 , in 

accordance with Eq. (12). In the case for N=2, the 

energy of the tensors Ts for s=1,2,3,4 is defined by 

the relations: 

    ;ab2)ba(3babbaaP 2222222
T1

  

  ;)ba(P 2
T2

 .0PP
43 TT                                   (14) 
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Fig. 8. Example: two-level HSVD2×2×2 for elementary tensor Т2×2×2 

 

To evaluate the energy (
1TP ) of the first tensor in 

the decomposition, regarding the total energy ( TP ) 

could be used the relation below: 

 .
)a/bb/a(2

1

4

3

)ba(4

ab2)ba(3
PP

22

224

1s
TT s1 





 



 (15) 

If a=4 and b=2 is obtained =0.95, i.e. 95% of 

the total energy of the tensor Т2×2×2 are concentrated 

in the first decomposition tensor, T1. In particular, if 

a=b, then =1 and in the first tensor is concentrated 

the total energy (100%), for any value of a.  

8.2. Mutual correlation   

The mutual correlation between couples of 

decomposition tensors R(Tр,Tр+1)  is defined by their 

scalar product: 

   .)k,j,i(t)k,j,i(t)T,T(R
N

1i

N

1j

N

1k
1pp1pp 

  
            (16) 

For the example from Fig. 7 the mutual correlation 

R(Tр,Tр+1) for р=1,2,3 between tensor couples, is 

correspondingly:    

  ,0)T,T(R)T,T(R  );ba()T,T(R 4332
22

21 

i.e., it rapidly decreases to zero. This result shows 

that the so obtained tensor components in the 

decomposition are significantly decorrelated.  

The Normalized Correlation Function (NCF) in 

respect of the first one, is: 

  



















 


2,3.sfor            0

1;sfor  
)ba(3

)ba(

0;s for               1

)T,T(R

)T,T(R
)T,T(

22

22

11

s11
s11

(17) 

For the case, when a=4 and b=2, on Fig. 9 is 

shown the graphic representation of the function 

(s). 

 

Fig. 9. The Normalized Correlation Function of the 

decomposition components 

 

0 

0,2 

0,4 

0,6 

0,8 

1 

1 

0,2 

0 0 

N
C

F 
(s

) 

 0      1      2      3      s      

Normalized Correlation Function 

SVD2x2

a

bb

a

ab

ba

Rearrengement 1

Rearrengement 2 Rearrengement 2

Level 1

Level 2

[X1]

[X2]

[C12]

]C[]C[
bb

aa
]X[ 12111 










]C[]C[
ab

ba
]X[ 22212 










[C22]

[C111]

[C211]

[C121]

[C221]

[C112]

[C212]

[C122]

[C222]

222T 

)1(T1 )2(T1 )1(T2 )2(T2

)2(T)1(T)2(T)1(T

TTT

2211

)222(2)222(1222






HSVD2x2x2

+ + +

SVD2x2

a

bb

a

(a+b)/2

[C11]
[C21]

)222(2)222(1 TT




SVD2x2

SVD2x2

SVD2x2

SVD2x2























2

ba
a

2

ba
a

]X[ 11























2

ba
0

2

ba
0

]X[ 21

0

0

0

0

(a+b)/2

(a+b)/2(a+b)/2

(a-b)/2 (a-b)/2

(a-b)/2(a-b)/2























2

ba
b

2

ba
b

]X[ 12























2

ba
0

2

ba
0

]X[ 22

a a

b b

(a+b)/2 (a+b)/2

(a+b)/2 (a+b)/2

00

00

(a-b)/2 (a-b)/2

(a-b)/2 (a-b)/2

0 0

0 0

0 0

00

0 0

0 0

0

0 0

0

WSEAS TRANSACTIONS on SIGNAL PROCESSING Roumen Kountchev, Roumiana Kountcheva

E-ISSN: 2224-3488 217 Volume 12, 2016



9 Computational complexity of the 

new hierarchical tensor decomposition  

In correspondence with [6], the computational 

complexity of new algorithm for decomposition of 

the tensor ]T[ nnn 222 
, is O(2

4n
). The comparison 

with the H-Tucker tensor decomposition 

О(3×2
3n

+3×2
4n

) shows, that for the new 

decomposition it is approximately 3 times lower. 

But, the needed memory should be about 1/3 larger, 

than that for the H-Tucker tensor decomposition.   

 

 

10  Conclusions 

The basic advantages of the new approach for 

calculation of the hierarchical tensor decomposition, 

used to represent 3D images of various kind, are as 

follows: 

 The offered HSVD algorithm, unlike the H-

Tucker tensor decomposition, has lower 

computational complexity and does not need 

iterative calculations;  

 In accordance with Eqs. (3) and (9), in each 

hierarchical level is executed repeatedly same 

decomposition of elementary tensors of size 222, 

which permits their parallel calculation;  

 The comparison with the famous tensor 

decompositions shows, that the HSVD algorithm 

opens new and better abilities to enhance the 

efficiency of the systems for real-time processing of 

3D images, and also in the 3D computer vision 

systems and 3D objects recognition.   
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